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using exponential smoothing

Abstract

An innovations state space modeling framework is introduced for forecasting complex

seasonal time series such as those with multiple seasonal periods, high frequency seasonality,

non-integer seasonality and dual-calendar effects. The new framework incorporates Box-

Cox transformations, Fourier representations with time varying coefficients, and ARMA

error correction. Likelihood evaluation and analytical expressions for point forecasts and

interval predictions under the assumption of Gaussian errors are derived, leading to a simple,

comprehensive approach to forecasting complex seasonal time series. A key feature of the

framework is that it relies on a new method that greatly reduces the computational burden

in the maximum likelihood estimation. The modeling framework is useful for a broad

range of applications, its versatility being illustrated in three empirical studies. In addition,

the proposed trigonometric formulation is presented as a means of decomposing complex

seasonal time series, and it is shown that this decomposition leads to the identification and

extraction of seasonal components which are otherwise not apparent in the time series plot

itself.
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Keywords: exponential smoothing, Fourier series, prediction intervals, seasonality, state2

space models, time series decomposition.3
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1 Introduction4

Many time series exhibit complex seasonal patterns. Some, most commonly weekly series,5

have patterns with a non-integer period. Weekly United States finished motor gasoline6

products in thousands of barrels per day, as shown in Figure 1(a), has an annual seasonal7

pattern with period 365.25/7≈ 52.179.8

Other series have high frequency multiple seasonal patterns. The number of retail banking9

call arrivals per 5-minute interval between 7:00am and 9:05pm each weekday, as depicted in10

Figure 1(b), has a daily seasonal pattern with period 169 and a weekly seasonal pattern with11

period 169×5 = 845. A longer version of this series might also exhibit an annual seasonal12

pattern. Further examples where such multiple seasonal patterns can occur include daily13

hospital admissions, requests for cash at ATMs, electricity and water usage, and access to14

computer web sites.15

Yet other series may have dual-calendar seasonal effects. Daily electricity demand in Turkey16

over nine years from 1 January 2000 to 31 December 2008, shown in Figure 1(c), has17

a weekly seasonal pattern and two annual seasonal patterns: one for the Hijri calendar18

with a period of 354.37; and the other for the Gregorian calendar with a period of 365.25.19

The Islamic Hijri calendar is based on lunar cycles and is used for religious activities and20

related holidays. It is approximately 11 days shorter than the Gregorian calendar. The21

Jewish, Hindu and Chinese calendars create similar effects that can be observed in time22

series affected by cultural and social events (e.g., electricity demand, water usage, and other23

related consumption data), and need to be accounted for in forecasting studies (Lin & Liu24

2002, Riazuddin & Khan 2005). Unlike the multiple periods seen with hourly and daily25

data, these dual calendar effects involve non-nested seasonal periods.26
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(a) US finished motor gasoline products supplied (thousands of barrels per day), from February 1991 to July
2005.
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(b) Number of call arrivals handled on weekdays between 7am and 9:05pm from March 3, 2003, to May 23,
2003 in a large North American commercial bank.
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(c) Turkish electricity demand data from January 1, 2000, to December 31, 2008.

Figure 1: Examples of complex seasonality showing (a) non-integer seasonal periods (b) multiple nested
seasonal periods, and (c) multiple non-nested and non-integer seasonal periods.
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Most existing time series models are designed to accommodate simple seasonal patterns27

with a small integer-valued period (such as 12 for monthly data or 4 for quarterly data).28

Important exceptions (Harvey & Koopman 1993, Harvey et al. 1997, Pedregal & Young29

2006, Taylor 2003, Gould et al. 2008, Taylor & Snyder 2009, Taylor 2010) handle some but30

not all of the above complexities. Harvey et al. (1997), for example, uses a trigonometric31

approach for single seasonal time series within a traditional multiple source of error state32

space framework. The single source of error approach adopted in this paper is similar in33

some respects, but admits a larger effective parameter space with the possibility of better34

forecasts (see Hyndman et al. 2008, Chap 13), allows for multiple nested and non-nested35

seasonal patterns, and handles potential nonlinearities. Pedregal & Young (2006) and Harvey36

& Koopman (1993) have models for double seasonal time series, but they have not been37

sufficiently developed for time series with more than two seasonal patterns, and are not38

capable of accommodating the nonlinearity found in many time series in practice. Similarly,39

in modeling complex seasonality, the existing exponential smoothing models (e.g., Taylor40

2003, Gould et al. 2008, Taylor & Snyder 2009, Taylor 2010) suffer from various weaknesses41

such as over-parameterization, and the inability to accommodate both non-integer period42

and dual-calendar effects. In contrast, we introduce a new innovations state space modeling43

framework based on a trigonometric formulation which is capable of tackling all of these44

seasonal complexities. Using the time series in Figure 1, we demonstrate the versatility of45

the proposed approach for forecasting and decomposition.46

In Section 2.1 we review the existing seasonal innovations state space models including47

an examination of their weaknesses, particularly in relation to complex seasonal patterns.48

We then introduce in Sections 2.2 and 2.3 two generalizations designed to overcome some49

or all of these these problems, one relying on trigonometric representations for handling50

complex as well as the usual single seasonal patterns in a straightforward manner with fewer51

parameters. Section 3 contains a new method for the calculation of maximum likelihood52
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estimators, formulae for point and interval predictions, and the description of the model53

selection methodology. It will be seen that the proposed estimation procedure is sufficiently54

general to be applied to any innovations state space model while possessing some important55

advantages over an existing approach. The proposed models are then applied in Section 456

to the time series from Figure 1 where it will be seen that the trigonometric formulation57

leads to better forecasts and may be used for decomposition. Some conclusions are drawn58

in Section 5.59

2 Exponential smoothing models for seasonal data60

2.1 Traditional approaches61

Single seasonal exponential smoothing methods, which are among the most widely used62

forecasting procedures in practice (Snyder et al. 2002, Makridakis et al. 1982, Makridakis &63

Hibon 2000), have been shown to be optimal for a class of innovations state space models64

(Ord et al. 1997, Hyndman et al. 2002). They are therefore best studied in terms of this65

framework because it then admits the possibility of likelihood calculation, the derivation of66

consistent prediction intervals and model selection based on information criteria. The single67

source of error (innovations) state space model is an alternative to its common multiple68

source of error analogue (Harvey 1989) but it is simpler, more robust, and has several other69

advantages (Hyndman et al. 2008) .70

The most commonly employed seasonal models in the innovations state space framework

include those underlying the well-known Holt-Winters’ additive and multiplicative methods.

Taylor (2003) extended the linear version of the Holt-Winters method to incorporate a

second seasonal component as follows:

yt = `t−1 +bt−1 + s(1)t + s(2)t +dt (1a)

De Livera, Hyndman and Snyder: 28 October 2010 6
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`t = `t−1 +bt−1 +αdt (1b)

bt = bt−1 +βdt (1c)

s(1)t = s(1)t−m1
+ γ1dt (1d)

s(2)t = s(2)t−m2
+ γ2dt , (1e)

where m1 and m2 are the periods of the seasonal cycles and dt is a white noise random71

variable representing the prediction error (or disturbance). The components `t and bt72

represent the level and trend components of the series at time t, respectively, and s(i)t73

represents the ith seasonal component at time t. The coefficients α,β ,γ1 and γ2 are the74

so-called smoothing parameters, and `0, b0, {s(1)1−m1
, . . . ,s(1)0 } and {s(2)1−m2

, . . . ,s(2)0 } are the75

initial state variables (or “seeds”).76

The parameters and seeds must be estimated, but this can be difficult when the number of

seasonal components is large. This problem is partly addressed by noting that there is a

redundancy when m2 is an integer multiple of m1, something that seems to have previously

gone unnoticed. Consider a time series {rt} consisting of repeated sequences of the constants

c1, . . . ,cm1 , one for each season in the smaller cycle. Then the seasonal equations can be

written as

s(1)t + rt = (s(1)t−m1
+ rt)+ γ1dt (2a)

s(2)t − rt = (s(2)t−m2
− rt)+ γ2dt . (2b)

When these are summed, the effect of rt disappears. This suggests that the m1 seed seasonal77

effects for the smaller seasonal cycle can be set to zero without constraining the problem78

in any way. Alternatively, each sub-season repeats itself m2/m1 times within the longer79

seasonal pattern. We can impose the constraint that the seed seasonal effects associated with80

each sub-season must sum to zero. For example, the period 10:00-11:00 AM repeats itself 781

times in a week. We can insist that the 7 seasonal effects associated with this particular hour82

De Livera, Hyndman and Snyder: 28 October 2010 7



Forecasting time series with complex seasonal patterns using exponential smoothing

sum to zero and that this is repeated for each of the 24 hour periods in a day. Analogues of83

these restrictions can be developed when there are three or more seasonal patterns.84

Despite this correction, a large number of initial seasonal values remain to be estimated85

when some of the seasonal patterns have large periods, and such a model is likely to be86

over-parameterized. For double seasonal time series Gould et al. (2008) attempted to reduce87

this problem by dividing the longer seasonal length into sub-seasonal cycles that have88

similar patterns. However, their adaptation is relatively complex and can only be used for89

double seasonal patterns where one seasonal length is a multiple of the other. To avoid90

the potentially large optimization problem, the initial states are usually approximated with91

various heuristics (Taylor 2003, Gould et al. 2008, Taylor 2010), a practice that does not92

lead to optimized seed states. We will propose an alternative estimation method, one that93

relies on the principle of least squares to obtain optimized seed states — see Section 3.94

A further problem is that none of the approaches based on (1) can be used to handle complex95

seasonal patterns such as non-integer seasonality and calendar effects, or time series with96

non-nested seasonal patterns. One of our proposed models will allow for all these features.97

The non-linear versions of the state space models underpinning exponential smoothing,98

although widely used, suffer from some important weaknesses. Akram et al. (2009) showed99

that most non-linear seasonal versions can be unstable, having infinite forecast variances100

beyond a certain forecasting horizon. For some of the multiplicative error models which101

do not have this flaw, Akram et al. (2009) proved that sample paths will converge almost102

surely to zero even when the error distribution is non-Gaussian. Furthermore, for non-linear103

models, analytical results for the prediction distributions are not available.104

The models used for exponential smoothing assume that the error process {dt} is serially105

uncorrelated. However, this may not always be the case. In an empirical study, using the106

Holt-Winters’ method for multiplicative seasonality, Chatfield (1978) showed that the error107
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process there is correlated and can be described by an AR(1) process. Taylor (2003) in a108

study of electricity demand forecasting using a double-seasonal Holt-Winters’ multiplicative109

method found a similar problem. Others such as Gardner (1985), Reid (1975), and Gilchrist110

(1976) have also mentioned this issue of correlated errors, and the possibility of improving111

forecast accuracy by explicitly modeling it. The source of this autocorrelation may be due112

to features of the series not explicitly allowed for in the specification of the states. Annual113

seasonal effects may impact on the call center data, for example, but the limited sample size114

means that it cannot be explicitly modeled.115

2.2 Modified models116

We now consider various modifications of the state space models for exponential smoothing117

to handle a wider variety of seasonal patterns, and to also deal with the problems raised118

above.119

To avoid the problems with non-linear models that are noted above, we restrict attention120

to linear homoscedastic models but allow some types of non-linearity using Box-Cox121

transformations (Box & Cox 1964). This limits our approach to only positive time series,122

but most series of interest in practice are positive. The notation y(ω)
t is used to represent123

Box-Cox transformed observations with the parameter ω , where yt is the observation at time124

t.125

We can extend model (1) to include a Box-Cox transformation, ARMA errors and T seasonal

patterns as follows.

y(ω)
t =


yω

t −1
ω

; ω , 0

logyt ω = 0

(3a)

y(ω)
t = `t−1 +φbt−1 +

T

∑
i=1

s(i)t−mi
+dt (3b)
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`t = `t−1 +φbt−1 +αdt (3c)

bt = (1−φ)b+φbt−1 +βdt (3d)

s(i)t = s(i)t−mi
+ γidt (3e)

dt =
p

∑
i=1

ϕidt−i +
q

∑
i=1

θiεt−i + εt , (3f)

where m1, . . . ,mT denote the seasonal periods, `t is the local level in period t, b is the126

long-run trend, bt is the short-run trend in period t, s(i)t represents the ith seasonal component127

at time t, dt denotes an ARMA(p,q) process and εt is a Gaussian white noise process with128

zero mean and constant variance σ2. The smoothing parameters are given by α , β and γi129

for i = 1, . . . ,T . We adopt the Gardner & McKenzie (1985) damped trend with damping130

parameter φ , but follow the suggestion in Snyder (2006) to supplement it with a long-run131

trend b. This change ensures that predictions of future values of the short-run trend bt132

converge to the long-run trend b instead of zero. The damping factor is included in the level133

and measurement equations as well as the trend equation for consistency with Gardner &134

McKenzie (1985), but identical predictions are obtained (see Snyder 2006) if it is excluded135

from the level and measurement equations.136

The identifier BATS is an acronym for key features of the model: Box-Cox trans-137

form, ARMA errors, Trend, and Seasonal components. It is supplemented with argu-138

ments (ω,φ , p,q,m1,m2, . . . ,mT ) to indicate the Box-Cox parameter, damping parame-139

ter, ARMA parameters (p and q), and the seasonal periods (m1, . . . ,mT ). For example,140

BATS(1,1,0,0,m1) represents the underlying model for the well-known Holt-Winters’ addi-141

tive single seasonal method. The double seasonal Holt-Winters’ additive seasonal model142

described by Taylor (2003) is given by BATS(1,1,0,0,m1,m2), and that with the residual143

AR(1) adjustment in the model of Taylor (2003, 2008) is given by BATS(1,1,1,0,m1,m2).144

The Holt-Winters’ additive triple seasonal model with AR(1) adjustment in Taylor (2010) is145

given by BATS(1,1,1,0,m1,m2,m3).146

De Livera, Hyndman and Snyder: 28 October 2010 10
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The BATS model is the most obvious generalization of the traditional seasonal innovations147

models to allow for multiple seasonal periods. However, it cannot accommodate non-integer148

seasonality, and it can have a very large number of states; the initial seasonal component149

alone contains mT non-zero states. This becomes a huge number of values for seasonal150

patterns with high periods.151

2.3 Trigonometric seasonal models152

In the quest for a more flexible parsimonious approach, we introduce the following trigono-

metric representation of seasonal components based on Fourier series (West & Harrison

1997, Harvey 1989):

s(i)t =
ki

∑
j=1

s(i)j,t (4a)

s(i)j,t = s(i)j,t−1 cosλ
(i)
j + s∗(i)j,t−1 sinλ

(i)
j + γ

(i)
1 dt (4b)

s∗(i)j,t =−s j,t−1 sinλ
(i)
j + s∗(i)j,t−1 cosλ

(i)
j + γ

(i)
2 dt , (4c)

where γ
(i)
1 and γ

(i)
2 are smoothing parameters and λ

(i)
j = 2π j/mi. We describe the stochastic153

level of the ith seasonal component by s(i)j,t , and the stochastic growth in the level of the ith154

seasonal component that is needed to describe the change in the seasonal component over155

time by s∗(i)j,t . The number of harmonics required for the ith seasonal component is denoted156

by ki. The approach is equivalent to index seasonal approaches when ki = mi/2 for even157

values of mi, and when ki = (mi− 1)/2 for odd values of mi. It is anticipated that most158

seasonal components will require fewer harmonics, thus reducing the number of parameters159

to be estimated. A deterministic representation of the seasonal components can be obtained160

by setting the smoothing parameters equal to zero.161
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A new class of innovations state space models is obtained by replacing the seasonal162

component s(i)t in equation (3c) by the trigonometric seasonal formulation, and the mea-163

surement equation by y(ω)
t = `t−1 + φbt−1 +∑

T
i=1 s(i)t−1 + dt . This class is designated by164

TBATS, the initial T connoting “trigonometric”. To provide more details about their165

structure, this identifier is supplemented with relevant arguments to give the designation166

TBATS(ω,φ , p,q,{m1,k1},{m2,k2}, . . . ,{mT ,kT}).167

A TBATS model requires the estimation of 2(k1 + k2 + · · ·+ kT ) initial seasonal values, a168

number which is likely to be much smaller than the number of seasonal seed parameters169

in a BATS models. Because it relies on trigonometric functions, it can be used to model170

non-integer seasonal frequencies. A TBATS model should be distinguished from two other171

related (Proietti 2000) multiple source of error seasonal formulations presented by Hannan172

et al. (1970) and Harvey (1989). Some of the key advantages of the TBATS modeling173

framework are: (i) it admits a larger effective parameter space with the possibility of better174

forecasts (Hyndman et al. 2008, Chap 13); (ii) it allows for the accommodation of nested175

and non-nested multiple seasonal components; (iii) it handles typical nonlinear features that176

are often seen in real time series; (iv) it allows for any autocorrelation in the residuals to be177

taken into account; and (v) it involves a much simpler, yet efficient estimation procedure178

(see Section 3).179

2.4 Innovations state space formulations180

The above models are special cases of the linear innovations state space model (Anderson

& Moore 1979) adapted here to incorporate the Box-Cox transformation to handle non-

linearities. It then has the form:

y(ω)
t = w′xt−1 + εt (5a)

xt = Fxt−1 +gεt , (5b)

De Livera, Hyndman and Snyder: 28 October 2010 12



Forecasting time series with complex seasonal patterns using exponential smoothing

where w′ is a row vector, g is a column vector, F is a matrix and xt is the unobserved state181

vector at time t.182

TBATS model183

The state vector for the TBATS model with a non-stationary growth term can be defined184

as xt = (`t ,bt ,s
(1)
t , . . . ,s(T )t ,dt ,dt−1, . . . ,dt−p+1,εt ,εt−1, . . . ,εt−q+1)

′ where s(i)t is the row185

vector (s(i)1,t ,s
(i)
2,t , . . . ,s

(i)
ki,t

,s∗(i)1,t ,s
∗(i)
2,t , . . . ,s

∗(i)
ki,t

). Let 1r = (1,1, . . . ,1) and 0r = (0,0, . . . ,0)186

be row vectors of length r; let γ (i)
1 = γ

(i)
1 1ki , γ (i)

2 = γ
(i)
2 1ki , γ (i) = (γ (i)

1 ,γ (i)
2 ), γ =187

(γ (1), . . . ,γ (T )), ϕ = (ϕ1,ϕ2, . . . ,ϕp) and θ = (θ1,θ2, . . . ,θp); let Ou,v be a u×v matrix of188

zeros, let Iu,v be a u× v rectangular diagonal matrix with element 1 on the diagonal, and let189

a(i) = (1ki,0ki) and a= (a(1), . . . ,a(T )). We shall also need the matrices B= γ ′ϕ , C= γ ′θ,190

Ai =

 C(i) S(i)

−S(i) C(i)

 , Ãi =

0mi−1 1

Imi−1 0′mi−1

 ,
and A=

⊕T
i=1Ai, where C(i) and S(i) are ki× ki diagonal matrices with elements cos(λ (i)

j )191

and sin(λ (i)
j ), respectively, for j = 1,2, . . . ,ki and i = 1, . . . ,T , and where

⊕
denotes the192

direct sum of the matrices. Let τ = 2∑
T
i=1 ki.193
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Then the matrices for the TBATS model can be written as w = (1,φ ,a,ϕ,θ)′, g =194

(α,β ,γ ,1,0p−1,1,0q−1)
′, and195

F =



1 φ 0τ αϕ αθ

0 φ 0τ βϕ βθ

0′τ 0′τ A B C

0 0 0τ ϕ θ

0′p−1 0′p−1 Op−1,τ Ip−1,p Op−1,q

0 0 0τ 0p 0q

0′q−1 0′q−1 Oq−1,τ Oq−1,p Iq−1,q



.

These matrices apply when all of the components are present in the model. When a196

component is omitted, the corresponding terms in the matrices must be omitted.197

BATS model198

The state space form of the BATS model can be obtained by letting s(i)t =199

(s(i)t ,s(i)t−1, . . . ,s
(i)
t−(mi−1)), a(i) = (0mi−1,1), γ (i) = (γi,0mi−1), A =

⊕T
i=1 Ãi, and by re-200

placing 2ki with mi in the matrices presented above for the TBATS models.201

Reduced forms202

It is well known that linear forecasting systems have equivalent ARIMA (Box & Jenkins203

1970) reduced forms, and it has been shown that the forecasts from some exponential204

smoothing models are identical to the forecasts from particular ARIMA models (Chatfield205

& Yar 1991, McKenzie 1984). The reduced forms of BATS and TBATS models can be206

obtained by,207

ϕp(L)η(L)y(ω)
t = θq(L)δ (L)εt , (6)

De Livera, Hyndman and Snyder: 28 October 2010 14
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where L is the lag operator, η(L) = det(I −F ∗L), δ (L) = w∗adj(I −F ∗L)g∗L+det(I −208

F ∗L), ϕp(L) and θq(L) are polynomials of length p and q, w∗ = (1,φ ,a), g∗ = (α,β ,γ)′,209

and210

F ∗ =


1 φ 0

0 φ 0

0′ 0′ A

 ,
with the corresponding parameters defined as above. (Refer to De Livera 2010b, Chap 4 for211

the proofs.)212

For BATS models with a non-stationary growth, the reduced form is then given by (6), with

η(L) = (1−φL)(1−L)
T

∏
j=1

(Lm j−1 +Lm j−2 + · · ·+L+1)

δ (L) =
T

∏
j=1

(Lm j−1 +Lm j−2 + · · ·+L+1)
[
L2(φ −φα)+L(α +φβ −φ −1)+1

]
+(1−φL)

T

∑
i=1

T

∏
j=1,i, j

(Lm j−1 +Lm j−2 + · · ·+L+1)γiLmi.

For TBATS models, with a non-stationary growth the reduced form is then given by (6),

with

η(L) = (1−L)(1−φL)
T

∏
i=1

ki

∏
j=1

(1−2cosλ
(i)
j L+L2)

δ (L) =
[
L2

φ(1−α)+L(α +φβ −φ −1)+1
] T

∏
i=1

ki

∏
j=1

(1−2cosλ
(i)
j L+L2)+

(1−L)(1−φL)
T

∑
i=1

ki

∑
j=1

T

∏
ĩ=1,ĩ,i

kĩ

∏
j̃=1, j̃, j

(1−2cosλ
(ĩ)
j̃ L+L2)

[
(cosλ

(i)
j γ1i + sinλ

(i)
j γ2i)L2− γ1iL3]

+(1−L)(1−φL)L
T

∏
i=1

ki

∏
j=1

(1−2cosλ
(i)
j L+L2)

T

∑
i=1

kiγ1i.

The reduced form of the model implies that the TBATS model has a relatively complex213

ARIMA structure which is dependent on the number of terms ki chosen for the ith seasonal214
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component, and encompasses trigonometric coefficients that rely on the frequency of215

each seasonal pattern. This highlights the fact that the state space form of the model216

has advantages over its reduced form counterpart, as it leads to a more logical derivation,217

providing a coherent interpretation of the components with a simpler estimation procedure.218

3 Estimation, prediction, and model selection219

3.1 Estimation220

The typical approach with linear state space models is to estimate unknown parameters like221

the smoothing parameters and the damping parameter using the sum of squared errors or the222

Gaussian likelihood (see Hyndman et al. 2008, Chap 3). In our context it is necessary to also223

estimate the unknown Box-Cox transformation parameter ω , and the ARMA coefficients.224

The seed states of state space models are usually treated as random vectors. Given trial225

values of the unknown parameters, the joint steady state distributions of stationary states226

are derived, and then assigned to associated seed states. Thus, for given values of φ and σ2,227

the seed short-run growth rate would be assigned an N(0,σ2/(1−φ 2)) distribution. Most228

states, however, are non-stationary, and they are presumed to have Gaussian distributions229

with arbitrarily large variances (Ansley & Kohn 1985). A Kalman filter is typically used230

to obtain one-step ahead prediction errors and associated variances needed for evaluating231

fitting criteria for given trial values of the parameters. The Kalman filter in Snyder (1985b)232

would be appropriate for innovations state space models in particular. However, like all233

Kalman filters it would need to be augmented with additional equations (De Jong 1991) to234

handle the non-stationary states.235

A simpler alternative is available in the context of innovations state space models. By condi-236

tioning on all the seed states and treating them as unknown fixed parameters, exponential237
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smoothing can be used instead of an augmented Kalman filter to generate the one-step ahead238

prediction errors needed for likelihood evaluation. In this case both the parameters and seed239

states are selected to maximize the resulting conditional likelihood function. If not for the240

different treatment of stationary states, the exponential smoothing and augmented Kalman241

filter approaches yield the same conditional distribution of the final state vector and so yield242

identical prediction distributions of future series values (Hyndman et al. 2008).243

The conditional likelihood of the observed data y = (y1, . . . ,yn) is derived on the as-244

sumption that εt ∼ N(0,σ2). This implies that the density of the transformed series is245

y(ω)
t ∼ N(w′xt−1,σ

2) so that the density of the transformed data is246

p(y(ω) | x0,ϑ,σ
2) =

n

∏
t=1

p(y(ω)
t | xt−1,ϑ,σ

2) =
n

∏
t=1

p(εt) =
1

(2πσ2)
n
2

exp
(
−1
2σ2

n

∑
t=1

ε
2
t

)

where ϑ is a vector containing the Box-Cox parameter, smoothing parameters and ARMA

coefficients. Therefore, the density of the original series, using the Jacobian of the Box-Cox

transformation, is

p(yt | x0,ϑ,σ
2) = p(y(ω)

t | x0,ϑ,σ
2)
∣∣∣det

(
∂y(ω)

t
∂y

)∣∣∣= p(y(ω)
t | x0,ϑ,σ

2)
n

∏
t=1

yω−1
t

=
1

(2πσ2)
n
2

exp
(
−1
2σ2

n

∑
t=1

ε
2
t

) n

∏
t=1

yω−1
t .

On concentrating out the variance σ2 with its maximum likelihood estimate

σ̂
2 = n−1

n

∑
t=1

ε
2
t , (7)

we obtain the log-likelihood given by

L (x0,ϑ,σ
2) =

−n
2

log(2πσ
2)− 1

2σ2

n

∑
t=1

ε
2
t +(ω−1)

n

∑
t=1

logyt . (8)
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Substituting (7) into (8), multiplying by −2, and omitting constant terms, we get

L ∗(x0,ϑ) = n log
( n

∑
t=1

ε
2
t

)
−2(ω−1)

n

∑
t=1

logyt . (9)

The quest is to minimize the quantity (9) to obtain maximum likelihood estimates, but247

the dimension of the seed states vector x0 makes this computationally challenging. Our248

approach to this problem is based on the observation that εt is a linear function of the249

seed vector x0. Thus, we show that it is possible to concentrate the seed states out of the250

likelihood, and so substantially reduce the dimension of the numerical optimization problem.251

This concentration process is the exponential smoothing analogue of de Jong’s method for252

augmenting Kalman filters to handle seed states with infinite variances.253

The innovation εt can be eliminated from the transition equation in (5) to give xt =Dxt−1 +

gyt whereD = F −gw′. The equation for the state, obtained by back-solving this recurrence

equation to period 0, can be used in conjunction with the measurement equation to obtain

εt = y(ω)
t −w′

t−1

∑
j=1
D j−1gy(ω)

t− j−w
′Dt−1x0,

= y(ω)
t −w′x̃t−1−w′t−1x0,

= ỹt−w′t−1x0, (10)

where ỹt = y(ω)
t −w′x̃t−1, x̃t = Dx̃t−1 + gyt , w′t = Dw′t−1, x̃0 = 0 and w′0 = w′ (see

Snyder 1985a, for the derivation). Thus, the relationship between each error and the initial

state vector x0 is linear. It can also be seen from (10) that the seed vector x0 corresponds to

a regression coefficients vector, and so it may be estimated using conventional linear least

squares methods. Thus, the problem reduces to minimizing the following with respect to ϑ:

L ∗(ϑ) = n log(SSE∗)−2(ω−1)
n

∑
t=1

logyt , (11)

where SSE∗ is the optimized value of the sum of squared errors for given parameter values.254
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In contrast to the existing estimation procedure (Hyndman et al. 2008) where a numerical255

optimizer is used to find the values of both the initial states and the parameters, our approach256

concentrates out the initial state values from the likelihood function, leaving only the much257

smaller parameter vector for optimization, a tactic in our experience that leads to better258

forecasts. It is also effective in reducing computational times instead of invoking the259

numerical optimizer to directly estimate the seed state vector.260

We can constrain the estimation to the forecastibility region (Hyndman et al. 2007) so that261

the characteristic roots of D lie within the unit circle, a concept that is equivalent to the262

invertibility condition for equivalent ARIMA models. The coefficients w′D j−1g are the263

matrix analogues of the weights in an exponentially weighted average, and this constraint264

ensures that their effect is to reduce the importance placed on older data. When some roots265

lie on the unit circle, the discounting effect is lost (although this possibility admits some266

important special cases). For integer period seasonality, the seasonal values can also be267

constrained when optimizing, so that each seasonal component sums to zero.268

3.2 Prediction269

The prediction distribution in the transformed space for future period n+h, given the final

state vector xn and given the parameters ϑ,σ2, is Gaussian. The associated random variable

is designated by y(ω)
n+h|n . Its mean E(y(ω)

n+h|n) and variance V(y(ω)
n+h|n) are given, after allowing

for the Box-Cox transformation, by the equations (Hyndman et al. 2005):

E(y(ω)
n+h|n) = w′F h−1xn (12a)

V(y(ω)
n+h|n) =


σ2 if h = 1;

σ
2
[

1+
h−1

∑
j=1

c2
j

]
if h≥ 2;

(12b)

De Livera, Hyndman and Snyder: 28 October 2010 19



Forecasting time series with complex seasonal patterns using exponential smoothing

where c j = w′F j−1g. The prediction distribution of yn+h|n is not normal. Point forecasts270

and forecast intervals, however, may be obtained using the inverse Box-Cox transformation271

of appropriate quantiles of the distribution of y(ω)
n+h|n. The point forecast obtained this272

way is the median, a minimum mean absolute error predictor (Pankratz & Dudley 1987,273

Proietti & Riani 2009). The prediction intervals retain the required probability coverage274

under back-transformation because the Box-Cox transformation is monotonically increasing.275

To simplify matters we use the common plug-in approach to forecasting. The pertinent276

parameters and final state are replaced by their estimates in the above formulae. This277

ignores the impact of estimation error, but the latter is a second-order effect in most practical278

contexts.279

3.3 Model selection280

The use of an information criterion281

In this paper, the AIC = L ∗(ϑ̂, x̂0)+2K is used for choosing between the models, where282

K is the total number of parameters in ϑ plus the number of free states in x0, and ϑ̂ and x̂0283

denote the estimates of ϑ and x0. When one of the smoothing parameters takes the boundary284

value 0, the value of K is reduced by one as the model simplifies to a special case. For285

example, if β = 0, then bt = b0 for all t. Similarly, when either φ = 1 or ω = 1, the value of286

K is reduced by one in each instance to account for the resulting simplified model. In an287

empirical study, Billah et al. (2005) indicated that information criterion approaches, such288

as the AIC, provide the best basis for automated model selection, relative to other methods289

such as prediction-validation. Alternative information criteria such as the AICc (Burnham &290

Anderson 2002) may also be used.291
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Selecting the number of harmonics ki in the trigonometric models292

The forecasts from the TBATS model depend on the number of harmonics ki used for the293

seasonal component i. It is impractical to consider all possible combinations in the quest for294

the best combination. After much experimentation we found that the following approach295

leads to good models and that further improvement can rarely be achieved (see De Livera296

2010b, Chap 3).297

De-trend the first few seasons of the transformed data using an appropriate de-trending298

method. In this paper, we employed the method described by Hyndman et al. (2008,299

Chap 2). Approximate the resulting de-trended data using the linear regression300

∑
T
i=1 ∑

ki
j=1 a(i)j cos(λ (i)

j t)+ b(i)j sin(λ (i)
j t). Starting with a single harmonic, gradually add301

harmonics, testing the significance of each one using F-tests. Let k∗i be the number of302

significant harmonics (with p < 0.001 ) for the ith seasonal component. Then fit the required303

model to the data with ki = k∗i and compute the AIC. Considering one seasonal component at304

a time, repeatedly fit the model to the estimation sample, gradually increasing ki but holding305

all other harmonics constant for each i, until the minimum AIC is achieved. This approach306

based on multiple linear regression, is preferred over letting k∗i = 1 for each component, as307

the latter was found to be unnecessarily time consuming.308

Selecting the ARMA orders p and q for the models309

In selecting a model, suitable values for the ARMA orders p and q must also be found.310

We do this using a two-step procedure. First, a suitable model with no ARMA component311

is selected. Then the automatic ARIMA algorithm of Hyndman & Khandakar (2008) is312

applied to the residuals from this model in order to determine the appropriate orders p and q313

(we assume the residuals are stationary). The selected model is then fitted again but with314

an ARMA(p,q) error component, where the ARMA coefficients are estimated jointly with315
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the rest of the parameters. The ARMA component is only retained if the resulting model316

has lower AIC than the model with no ARMA component. Our subsequent work on the317

proposed models on a large number of real time series (De Livera 2010a) have indicated that318

fitting ARMA in a two step approach yielded the best out-of-sample predictions, compared319

to several alternative approaches.320

4 Applications of the proposed models321

The results obtained from the application of BATS and TBATS to the three complex time322

series in Figure 1 are reported in this section.323

In addition, it is shown that the TBATS models can be used as a means of decomposing324

complex seasonal time series into trend, seasonal and irregular components. In decomposing325

time series, the trigonometric approach has several important advantages over the traditional326

seasonal formulation. First, seasonal components obtained from the BATS model are not327

normalized (cp. the seasonal model of Harrison & Stevens 1976). Although normalized328

components may not be necessary if one is only interested in the forecasts and the prediction329

intervals, when the seasonal component is to be analyzed separately or used for seasonal330

adjustment, normalized seasonal components are required (Archibald & Koehler 2003, Hyn-331

dman et al. 2008). Thus, BATS models have to be modified, so that the seasonal components332

are normalized for each time period, before using them for time series decomposition (see333

De Livera 2010b, Chap 5 for a normalized version of the BATS model). In contrast, the334

trigonometric terms in TBATS models do not require normalization, and so are more appro-335

priate for decomposition. Second, in estimating the seasonal components using BATS, a336

large number of parameters are required, which often leads to noisy seasonal components. In337

contrast, a smoother seasonal decomposition is expected from TBATS where the smoothness338

of the seasonal component is controlled by the number of harmonics used. Furthermore,339

De Livera, Hyndman and Snyder: 28 October 2010 22



Forecasting time series with complex seasonal patterns using exponential smoothing

a BATS model cannot be used to decompose time series with non-integer seasonality and340

dual calendar effects. Using TBATS models for complex seasonal time series, the overall341

seasonal component can be decomposed into several individual seasonal components with342

different frequencies. These individual seasonal components are given by s(i)t (i = 1, . . . ,T )343

and the trend component is obtained by `t . Extracting the trend and seasonal components344

then leaves behind a covariance stationary irregular component, denoted by dt . In particular,345

this approach leads to the identification and extraction of one or more seasonal components,346

which may not be apparent in the time series plots themselves.347

4.1 Application to weekly US gasoline data348

Figure 1(b) shows the number of barrels of motor gasoline product supplied in the United349

States, in thousands of barrels per day, from February 1991 to July 2005 (see www.350

forecastingprinciples.com/files/T_competition_new.pdf for details). The351

data are observed weekly and show a strong annual seasonal pattern. The length of sea-352

sonality of the time series is m1 = 365.25/7≈ 52.179. The time series exhibits an upward353

additive trend and an additive seasonal pattern; that is, a pattern for which the variation does354

not change with the level of the time series.355

The series, which consists of 745 observations, was split into two segments: an estimation356

sample period (484 observations) and test sample (261 observations). The estimation sample357

was used to obtain the maximum likelihood estimates of the initial states and the smoothing358

parameters, and to select the appropriate number of harmonics and ARMA orders. Following359

the procedure for finding the number of harmonics to start with, it was found that only one360

harmonic was highly significant. The model was then fitted to the whole estimation sample361

of 484 values by minimizing the criterion equation (11). The values of the AIC decreased362

until k1 = 7, and then started to increase.363
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Out-of-sample performance was measured by the Root Mean Square Error (RMSE), defined

as

RMSEh =

√√√√ 1
p−h+1

n+p−h

∑
t=n

(yt+h− ŷt+h|t)
2, (13)

where p = 261 is the length of the test sample, n = 484 is the length of the estimation364

sample and h is the length of the forecast horizon. Further analysis showed that changing365

the value of k1 from 7 generated worse out of sample results, indicating that the use of the366

AIC as the criterion for this model selection procedure is a reasonable choice. In this way,367

the TBATS(0.9922,1,0,0,{365.25/7,7}) model was obtained. As a second step, ARMA368

models were fitted to the residuals with (p,q) combinations up to p = q = 5, and it was369

discovered that the TBATS(0.9922,1,0,1,{365.25/7,7}) model minimizes the AIC.370

The BATS model was considered next with m1 = 52, and following the above procedure,371

it was discovered that the BATS(0.9875,1,0,1,52) model minimized the AIC. Figure 2372

shows the out-of-sample RMSEs obtained for the two models, and it can be seen that the373

trigonometric model performs better for all lead times.374
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Figure 2: Out-of-sample results for the US gasoline data using BATS(0.9875,1,0,1,52) and TBATS(0.9922,
1,0,1,{365.25/7,7}).
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Table 1: Parameters chosen for each application of the TBATS model.

Data Parameters
ω φ α β γ1 γ2 γ3 γ4 γ5 γ6 θ1 θ2 ϕ1 ϕ2 ϕ3

Gasoline 0.9922 1 0.0478 0 0.0036 -0.0005 -0.2124
Call center 1 0.0921 0.0006 -0.0002 0.0022 0.0020 -0.1353 0.1776 -0.0144 -0.0200
Electricity 0.1393 1 0.8019 0 0.0034 -0.0037 0.0001 0.0001 0.1171 0.251 -1.2610 0.3128 1.0570 -0.2991 -0.1208

Table 2: Parameters chosen for each application of the BATS model.

Data Parameters
ω φ α β γ1 γ2 γ3 θ1 θ2 ϕ1 ϕ2 ϕ3

Gasoline 0.9875 1 0.0457 0 0.2246 -0.2186
Call center 0.4306 0.0368 0.0001 0.0001 0.0552 0.1573 0.1411
Electricity 0.0013 1 0.2216 0 0 0 0

The BATS model cannot handle the non-integer periods, and so has to be rounded off to the375

nearest integer. It may also be over-parameterized, as 52 initial seasonal values have to be376

estimated. Both these problems are overcome in the trigonometric formulation.377

Tables 1 and 2 show the estimated parameters obtained for the TBATS and BATS models378

respectively. The estimated values of 0 for β and 1 for φ imply a purely deterministic379

growth rate with no damping effect. The models also imply that the irregular component of380

the series is correlated and can be described by an ARMA(0,1) process, and that a strong381

transformation is not necessary to handle nonlinearities in the series.382

The decomposition of the Gasoline time series, obtained from the fitted TBATS model, is383

shown in Figure 3. The vertical bars at the right side of each plot represent equal heights384

plotted on different scales, thus providing a comparison of the size of each component. The385

trigonometric formulation in TBATS allows for the removal of more randomness from the386

seasonal component without destroying the influential bumps.387
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Figure 3: Trigonometric decomposition of the US gasoline data. The within sample RMSE was 279.9.

4.2 Application to call center data388

The call center series in Figure 1(a) consists of 10,140 observations, that is 12 weeks of389

data starting from 3 March 2003 (Weinberg et al. 2007). It contains a daily seasonal pattern390

with period 169 and a weekly seasonal pattern with period 169∗5 = 845. The fitting sample391

consists of 7,605 observations (9 weeks). As the trend appears to be close to zero, the growth392

rate bt was omitted from the models.393

The selection procedure led to the models TBATS(1,NA,3,1,{169,29},{845,15}) and394

BATS(0.4306,NA,3,0,169,845). Other BATS models with ω = 1 were also tried, but their395

forecasting performance was worse.396
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Figure 4: Out-of-sample results for the call center data using BATS(0.4306,NA,3,0,169,845) and
TBATS(1,NA,3,1,{169,29},{845,15}).

The post-sample forecasting accuracies of the selected BATS and TBATS models are397

compared in Figure 4. Again TBATS, which requires fewer parameters to be estimated, is398

more accurate than BATS.399

The estimated parameters for the TBATS model shown in Table 1 imply that no Box-Cox400

transformation is necessary for this time series, and that the weekly seasonal component is401

more variable than the daily seasonal component. The irregular component is modeled by402

an ARMA(3,1) process.403

The decomposition obtained from TBATS, as shown in Figure 5, clearly exhibits strong daily404

and weekly seasonal components. The weekly seasonal pattern evolves considerably over405

time but the daily seasonal pattern is relatively stable. As is seen from the time series plot406

itself, the trend component is very small in magnitude compared to the seasonal components.407
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Figure 5: Trigonometric decomposition of the call center data. The within sample RMSE was 14.7.

4.3 Application to the Turkey electricity demand data408

The Turkey electricity demand series shown in Figure 1(c) has a number of important409

features that should be reflected in the model structure. Three seasonal components with410

frequencies m1 = 7, m2 = 354.37 and m3 = 365.25 exist in the series. The sharp drops411

seen in the seasonal component with period 354.37 are due to the Seker (also known as412

Eid ul-Fitr) and Kurban (also known as Eid al-Adha) religious holidays, which follow the413

Hijri calendar, while those seen in the seasonal component with frequency 365.25 are due414

to national holidays which follow the Gregorian calendar. Table 3 gives the dates of the415

holidays from the Hijri and Gregorian calendars. Seker is a three-day festival when sweets416

are eaten to celebrate the end of the fast of Ramadan. Kurban is a four-day festival when417

sacrificial sheep are slaughtered and their meat distributed to the poor. In addition, there are418

national holidays which follow the Gregorian calendar as shown in the table.419
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Table 3: The dates of Turkish holidays between 1 January 2000 to 31 December 2006.

Religious holidays
Year Seker holiday Kurban holiday National holidays

2000 08 Jan–10 Jan 16 Mar–19 Mar 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
27 Dec–29 Dec

2001 16 Dec–18 Dec 05 Mar–08 Mar 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
2002 05 Dec–07 Dec 22 Feb–25 Feb 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
2003 25 Nov–27 Nov 11 Feb–14 Feb 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
2004 14 Nov–16 Nov 01 Feb–04 Feb 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
2005 03 Nov–05 Nov 20 Jan–23 Jan 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
2006 23 Oct–25 Oct 10 Jan–13 Jan 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct

31 Dec

Table 4: Number of estimated parameters for each model in each application.

Data Model No.parameters
Gasoline BATS(0.9875,1,0,1,52) 60

TBATS(0.9922,1,0,1,{365.25/7,7}) 23

Call center BATS(0.4306,NA,3,0,169,845) 1026
TBATS(1,NA,3,1,{169,29},{845,15}) 102

Electricity BATS(0.0013,1,0,7,354,365) 735
TBATS(0.1393,1,3,2,{7,3},{354.37,23},{365.25,3}) 79

In this study, the series, which covers a period of 9 years, is split into two parts:420

a fitting sample of n = 2191 observations (6 years) and a post-sample period of421

p = 1096 observations (3 years). The model selection procedure was followed to422

give the TBATS(0.1393,1,3,2,{7,3},{354.37,23},{365.25,3}) and BATS(0.0013,1,0,0,423

7,354,365) models.424

Figure 6 shows that a better post-sample forecasting performance is again obtained from425

the TBATS model. The poor performance of the BATS model may be explained by its426

inability to capture the dual seasonal calendar effects and the large number of values that is427

required to be estimated. The estimated zero values for the smoothing parameters shown428

in Table 2 for the BATS solution suggest stable seasonal components. The Hijri seasonal429

component based on the TBATS solution displays a similar level of stability. However,430

moderate change is implied by the TBATS model in the weekly and Gregorian seasonal431

components. Both models required strong Box-Cox transformations in order to handle the432

obvious non-linearity in the time series plot.433
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Figure 6: Out-of-sample results for the Turkey electricity demand data using BATS(0.0013,1,0,0,
7,354,365) and TBATS(0.1393,1,3,2,{7,3},{354.37,23},{365.25,3}).
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Figure 7: Trigonometric decomposition of the Turkey electricity demand data. The within sample RMSE was
0.1346.
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The decomposition of the series obtained by using the chosen TBATS model, is shown in434

Figure 7. The first panel shows the transformed observations and the second shows the trend435

component. The third panel shows the weekly seasonal component with period 7, and the436

fifth and the sixth panels show the seasonal component based on the Hijri calendar with437

period 354.37 and the seasonal component based on the Gregorian calendar with period438

365.25 respectively. The seasonal components shown in the fifth and sixth panels may439

initially appear to be mirror images. However, their combined effect, shown in the fourth440

panel, indicates that this is not the case. Interpreting their combined effect as the annual441

seasonal component would be misleading as there is no unique annual calendar in this442

situation: both constituent calendars are of different lengths.443

The rather wiggly components of the decomposition are probably due to the use of a large444

number of harmonics in each seasonal component. This is necessary to capture the sharp445

drops seen in the time series plot. If we were to augment the stochastic seasonal component446

by deterministic holiday effects (given in Table 3) represented by dummy variables, the447

number of harmonics required might be reduced. Using a trend component, a seasonal448

component and holiday dummy variables, regression was performed on the transformed y(ω)
t449

values. The term ∑
3
i=1 ∑

ki
j=1 a(i)j cos(λ (i)

j t)+b(i)j sin(λ (i)
j t) was used to capture the multiple450

seasonality with k1 = 3 and k2 = k3 = 1. The estimated holiday effect was then removed451

from the series and the remainder was decomposed using TBATS to achieve the result shown452

in Figure 8, which provides a much smoother seasonal decomposition. Again, the sum of453

the Hijri seasonal component and the Gregorian seasonal component shown in the fourth454

panel illustrates that the Hijri and Gregorian seasonal components do not offset each other.455

This analysis demonstrates the capability of our trigonometric decomposition in extracting456

those seasonal components which are otherwise not apparent in graphical displays.457
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Figure 8: Trigonometric decomposition of the regressed Turkey electricity demand data. The within sample
RMSE was 0.1296.

In forecasting complex seasonal time series with such deterministic effects, both BATS and458

TBATS models may be extended to accommodate regressor variables, allowing additional459

information to be included in the models (see De Livera 2010a, Chap 7 for a detailed460

discussion of the BATS and TBATS models with regressor variables.)461

5 Concluding remarks462

A new state space modeling framework, based on the innovations approach, was developed463

for forecasting time series with complex seasonal patterns. The new approaches offer464

alternatives to traditional counterparts, providing several advantages and additional options.465
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A key feature of the proposed trigonometric framework is its ability to model both linear and466

non-linear time series with single seasonality, multiple seasonality, high period seasonality,467

non-integer seasonality and dual calendar effects. We are not aware of another modeling468

procedure that is able to forecast and decompose all these complex seasonal time series469

features within a single framework.470

In addition, the framework consists of a new estimation procedure which is sufficiently471

general to be applied to any innovations state space model. By relying on maximum472

likelihood estimation, it avoids the ad hoc startup choices with unknown statistical properties473

commonly used with exponential smoothing. By incorporating the least-squares criterion, it474

streamlines the process of obtaining the maximum likelihood estimates.475

The applications of the proposed modeling framework to three complex seasonal time series476

demonstrated that the trigonometric models led to a better out of sample performance with477

substantially fewer values to be estimated than traditional seasonal exponential smoothing478

approaches (see Table 4). The trigonometric approach was also illustrated as a means of479

decomposing complex seasonal time series.480

A further advantage of the proposed framework is its adaptability. It can be altered to481

encompass various deterministic effects that are often seen in real life time series. For482

instance, the moving holidays such as Easter and irregular holidays can be handled by483

incorporating dummy variables in the models (see De Livera 2010a, Chap 7), and the484

varying length of months can be managed by adjusting the data for trading days before485

modeling (see Makridakis et al. 1998).486

The framework can also be adapted to handle data with zero and negative values. The487

use of a Box-Cox transformation limits limits our approach to positive time series, as is488

often encountered in complex seasonal time series. However, the inverse hyperbolic sine489

transformation (Johnson 1949) can be used in its place should the need arise.490
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The derivation of likelihood estimates of the proposed approach relies on the assumption of491

a Gaussian distribution for the errors, something that is often a reasonable approximation492

when the level of the process is sufficiently far from the origin (Hyndman et al. 2008).493

In cases where such an assumption may conflict with the underlying structure of the data494

generating process, our approach can be readily adapted to non-Gaussian situations. Being495

based on exponential smoothing where the conditioning process ensures that successive496

state vectors become fixed quantities, any suitable distribution can substitute for the role497

of the Gaussian distribution. Thus, if the innovations have a t-distribution, the prediction498

error form of the likelihood can be formed directly from the product of t-distributions. The499

analytical form of successive prediction distributions is unknown, but they can be simulated500

from successive t-distributions using means obtained from the application of the equations501

of the innovations state space model. This can be contrasted with a Kalman filter approach,502

which must usually be adapted in the presence of non-Gaussian distributions, to a form503

which necessitates the use of computationally intensive simulation methods.504

The proposed frameworks can also be extended to exploit the potential inter-series dependen-505

cies of a set of related time series, providing an alternative to the existing vector exponential506

smoothing framework (De Silva et al. 2007), but with several advantages (see De Livera507

2010a, Chap 7).508

The R code for the methods implemented in this paper will be available in the forecast509

package for R (Hyndman 2010).510
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